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Analytic solutions for potential flow 
over a class of semi-infinite two-dimensional 

bodies having circular-arc noses 

By JOHN L. HESS 
McDonnell Douglas Corporation, Douglas Aircraft Company, Long Beach, California 

(Received 23 February 1973)  

A new class of analytic solutions to the problem of two-dimensional potential 
flow is presented here. The method of solution has features of both direct and 
indirect solutions. The bodies about which flow is computed are semi-infinite and 
have forward regions that either are flat or consist of a circular arc, which may 
be convex or concave to the flow. Closed-form solutions are obtained for the 
surface velocity. Afterbody shapes are defined by implicit equations containing 
a quadrature. Certain analytic properties of the solutions are investigated. An 
interesting feature of the bodies is the presence of a ‘pseudo corner’ where the 
slope angle is continuous but the curvature is infinite. The surface velocity 
becomes logarithmically infinite at  these points in contrast to the power-law 
behaviour at  a true corner. One case of the convex circular arc has finite velocity 
everywhere, and in some sense represents flow over a circular cylinder with a 
‘natural ’ separation point. This point occurs at  77-45’ from the front stagnation 
point, which is close to the separation point for incompressible laminar boundary- 
layer flow. 

1. Introduction 
The problem of incompressible potential flow about a solid body has long been 

of interest in fluid mechanics because of the surprisingly close agreement between 
this simple flow and real low-speed flow without boundary-layer separation. For 
completely general bodies even the problem of potential flow is not easy, and 
resort must be made to a large-scale computer and to numerical techniques (Hess 
& Smith 1966; Hess 1971). For a few bodies the potential-flow velocity field may 
be expressed in terms of a closed analytic expression or at  worst an expression, 
such as an infinite series or a quadrature, whose evaluation is simpler than a 
complete numerical solution. Such solutions have always been of interest as 
illustrative examples of potential flow. However, they are also of practical 
interest in at  least two ways. First, quick approximate studies may be conducted 
using these analytic expressions to establish the feasibility of a proposed design 
procedure. For example, the flow field of an elliptic cylinder may be used to 
approximate that of a two-dimensional airfoil of the same thickness for the 
purpose of estimating far-field interference effects. Second, the exact analytic 
solution for a particular body may be used to evaluate the accuracy of general 
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numerical methods, such as those reviewed in Hess (1971). Numerical methods 
may be refined to yield higher accuracy with an increase in computing time. 
Comparison with an exact solution indicates how far the refinement process need 
be carried to obtain acceptable accuracy without unnecessarily increasing com- 
puting time. Of course the situation is affected by the geometry of the body in 
question, so it is useful to have analytic solutions for as many types of bodies as 
possible. 

Analytic solutions have been obtained in two ways: direct solution and indirect 
solution. In  the former the body is specified to begin with, and the flow field must 
be calculated. This is of course the problem solved by general numerical methods 
for arbitrary bodies. However, for a very small number of bodies such solutions 
may be obtained by analytic techniques, principally separation of variables or 
conformal mapping, the latter of which is restricted to two-dimensional problems. 
A larger class of solutions can be generated by indirect solutions. These are based 
on the use of flow singularities, such as sources, vortices and dipoles. Each singu- 
larity gives rise to a velocity field that satisfies the basic potential-flow equations 
except a t  the singularity itself. Such flows are superimposed upon a uniform 
stream. Any streamline of the resulting flow may be considered as the boundary 
of a body, the flow about which is given by adding the individual flows of the 
singularities and the uniform stream. Proper distribution of singularities and 
proper selection of a streamline yield flows about interesting families of bodies. 
In  contrast to the direct problem, for which the body is given, calculation of the 
body shape is the most difficult part of an indirect solution. The class of analytic 
solutions to be described here is generated by a method that has features of both 
the direct and the indirect solutions. 

The idea of obtaining indirect solutions by superposition of point sources was 
put forward by Rankine (1871). Because this method has several features in 
common with the method to be described here, it is useful to outline the simplest 
case of Rankine’s procedure, a single two-dimensional point source (three- 
dimensional line source) in a uniform stream. The velocity a t  a point (2, y) due 
to a source of unit strength a t  a point (6, q )  is 

V, = (2 / r2 )  [(x - 6 )  i + (Y - r)jl, (1) 

where r2=  ( x -6 )2+(y -q ) z  (2) 

and i and j are unit vectors along the x and y axes, respectively. With this 
definition of the unit source the flux of velocity from a source per unit time is 
4nK, where K is the strength of the source. The simplest Rankine-type flow is 
obtained from a uniform stream of velocity U parallel to the x axis and a point 
source of strength K a t  the origin. The velocity field is 

The velocity is zero at the point 

x0 = -2K/U, yo = 0. 

(3) 

(4) 
The streamline which bifurcates a t  this stagnation point is taken as a body 
contour and is sketched in figure 1. The body is semi-infinite and symmetric 
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FIGURE 1. Two-dimensional body shape obtained by superposing a point source 
and a uniform stream. 

about the x axis. All fluid emitted by the source remains within the body, so for 
large positive values of x, for which the velocity is U, the half-thickness h of the 
body is given by 

h = 2nK/U. (5) 

It can be shown (Milne-Thomson 1950, p. 196) that the shape of the body is given 
by the equation 

1 1  

X Y  
- = -tan F), 

which is the shape plotted in figure 1. Thus in evaluating a numerical method the 
shape (6) would be input to the method and the calculated velocity compared 
with (3). However, for interference studies, often the details of the shape are not 
required. It is enough to know that a semi-infinite body of thickness (5) with its 
nose located at  (4) gives rise to the velocity field (3). Calculation of (6) is not 
necessary. 

2. A new type of solution 
Hess & Smith (1966) describe a method for solving the problem of two- 

dimensional potential flow directly by means of a source distribution over the 
body in question. Specifically, a source distribution of variable strength cs lies on 
the body. The velocity at any point is 

v =  V,Crds+U, f (7) 

where s is arc length along the body, U is the free-stream velocity and V, is given 
by (1) with ( 6 , ~ )  identified with a general point of the body surface. The integral 
in (7) is over the entire body, which is either a closed curve or a semi-infinite 
shape of the type illustrated in figure 1. Both these cases are called ‘closed’ 
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Trailing streamline 

FIGURE 2. Generation of solutions using a source density on a partial body. 

bodies, and the notation for the integral in (7 )  reflects this. The condition of zero 
normal velocity on the boundary is 

2 7 7 4 ~ )  + (V,. n) a(q) ds = - n.  U, $ 
where p denotes the point (x, y), which is a point on the body, and q denotes the 
point (g, q), as illustrated in figure 2 .  The unit outward normal vector at  p is n. 
The origin of the term 2ncr(p) in (8) is discussed by Hess & Smith (1966). Equa- 
tion (8) is an integral equation for c. Once it has been solved velocities are com- 
puted from (7).  In general the integrand of (8) depends on the co-ordinates of 
bothp and q, and a numerical solution is the only possibility. An analytic solution 
is possible for a circle, but of course this solution can be obtained by other means. 

In general terms the present method of generating analytic solutions parallels 
the above direct solution with just one difference. While the general method 
above distributes source density on a complete closed body, the new method 
distributes sources on a partial open body as shown in figure 2. The condition of 
zero normal velocity is applied over the partial body to obtain the integral 
equation 

* 
2 n u ( p )  + (V,. n) a(q) ds = - n . U, $ (9) 

where the integral notation reflects the fact that the integration is over a non- 
closed curve. When c is known the velocity field is calculated from 

v =  V,ads+U. f 
The only difference between the set of equations (9) and (10) and the set (7 )  and (8) 
is the domain of integration. Solution of (9) presents no difficulties in principle 
or numerically. 

A question arises as to the physical significance of the solution represented 
by (9) and (10). It is clear that the partial body of figure 2 is a streamline of the 
flow, which in the general case shown has a forward stagnation point where the 
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streamline bifurcates. If the source density is non-negative a t  the end of the body 
the streamline simply leaves the partial body and continues downstream. This 
portion is called the trailing streamline. In  general there is a net positive source 
strength, so the streamlines from the two ends of the body do not rejoin each 
other but proceed to infinity a finite distance apart. Thus the velocity field (10) 
may be thought of as that due to a semi-infinite body consisting of the partial 
body and the two streamlines leaving it (figure 2). The source distribution on the 
complete body is that from (9) on the partial body and zero on the streamlines. 

If the source density is zero at an end of the partial body the velocity is 
finite there. If the source density is positive there, the velocity is infinite in a 
manner qualitatively similar to that in flow about a sharp convex corner. How- 
ever, the singularity is logarithmic here, rather than being the power-law singu- 
larity appropriate to a corner. In  this case the streamline leaving the body does 
so with continuous slope but with infinite curvature. If the source density is 
negative at  an end of the partial body, the velocity there is infinite and in the 
upstream direction. Thus the streamline does not leave the body but joins it 
from downstream, and there must be additional stagnation points in the 
neighbourhood. Apparently, a case having negative source density at an end of 
the partial body does not have the same physical significance as a case where 
the source density there is positive. 

For the same body shape, solution of integral equation (9) is no easier than 
solution of integral equation (8). Analytic solutions can be obtained only for 
a circular arc and for a straight line. However, these represent a one-parameter 
family of bodies, instead of the single body for which (8) is analytically solvable. 
Furthermore, these are new analytic solutions. 

3. Specific analytic solutions 
3.1. Flat-nosed body 

Consider a partial body consisting of a straight line lying along the y axis from 
- d to + d, as illustrated in figure 3 (a). The exterior of the body is x = 0 - , and 
the unit normal vector is - i. From (1) with x = [ = 0 it  follows that 

so that the integral term of (9) vanishes, and the equation can be solved trivially. 
If the free stream makes an angle a with the x axis, then 

and the solution of (9) is 

Integration of this over the straight line can be accomplished by the methods of 
Hess & Smith (1966) to give the velocity field 

V,.n = 0, (11) 

U = U[cos ai + sin aj] 

0- = (2n)-1 cos a. 

(12) 

(13) 
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(b) 

FIGURE 3. A body with a flat nose. (a) General notation. (b) Calculated 
body shape for the symmetric case (a = 0). 

On the front of the body (x = 0 - ), V, = 0 as required, and 

v,= u -log - '+'la +sins . [,,, (1-y/d) ] 
The stagnation point is at  

yo/d = - tanh (&r tan a). 

The most interesting case is the symmetric one, for which a = 0. The implicit 
equation of the trailing streamline on the upper side of the body is 

&rP - P tan-lP + 4 log (1 + P 2 )  = &r& - 0 tan-lQ + +log (1 + Q2), (17) 

where P = (y-d)/x, 4? = (y+d)/x. (18) 

This curve is sketched in figure 3 (b ) .  Tabulated values of the streamline shape 
and its velocity are given in table 1. The final width of the body is just twice its 
initial width, i.e. as x-fm, y+2d. 

In the neighbourhood of the point x = 0, y = d, the trailing streamline has 
the behaviour 

x x dy 1 x d2y 1 1  
y-d N -- log - log- - w - - -  

7T 2d' dx -n 2d' dX2 7Tx' 

Thus the slope angle of the streamline approaches + 7 ~  and there is no discontinuity 
in this quantity. However, the curvature is infinite. The logarithmic infinity in 
surface velocity (15) is apparently the appropriate singularity for this 'pseudo 
corner ', i.e. a weaker singularity than for any true corner. 
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x/d 
0 
0.0501 
0.0997 
0.1497 
0-2507 
0.3506 
0.4507 
0.5511 
0.6508 
0.8000 
0.9497 
1.0989 
1.2500 
1.4519 
1.6502 
1.8484 
2.0513 
2.2523 
2.5000 
2.7510 
2.9985 
3.2499 
3-5026 
3.7523 
3.9944 
4.2517 

Y/d 
1.0 
1.0555 
1.0937 
1.1262 
1.1810 
1.2261 
1.2648 
1.3009 
1.3300 
1.3760 
1.4122 
1.4406 
1.4750 
1.5045 
1.5413 
1.5693 
1.5949 
1.6126 
1.6375 
1.6548 
1-6837 
1.6974 
1.7145 
1.7317 
1.7442 
1.7509 

vT\ u 
00 

1.4403 
1.4070 
1.3793 
1.3489 
1.3307 
1.3171 
1-3051 
1.2959 
1.2811 
1.2692 
1.2589 
1.2476 
1.2354 
1.2229 
1.2120 
1.2017 
1.1925 
1.1818 
1.1721 
1.1627 
1.1646 
1.1469 
1.1399 
1.1337 
1.1278 

X P  

4.5025 
4.7506 
5.0100 
5.2507 
5.5021 
5.7504 
6.0024 
6.5820 
7.0077 
7-4906 
7.9936 
8.4926 
9.0050 
9.5012 

10~0000 
11~0000 
12.0000 
13.0000 
14.0000 
15.0000 
16.5000 
18.5000 
21.0000 
24.0000 
29.0000 

00 

Y P  
1.7600 
1.7696 
1.7806 
1.7881 
1.8006 
1.8062 
1.8151 
1.8284 
1.8312 
1.8539 
1.8617 
1-8705 
1.8726 
1.8741 
1.8800 
1.8843 
1.8939 
1.9021 
1.9091 
1.9151 
1.9228 
1,9312 
1.9394 
1.9469 
1.9561 
2~0000 

VTI u 
1.1223 
1.1173 
1.1125 
1.1083 
1,1042 
1.1004 
1.0968 
1.0895 
1.0848 
1.0798 
1.0753 
1.0713 
1.0676 
1.0644 
1.0614 
1.0561 
1.0517 
1.0479 
1.0446 
1.0417 
1.0380 
1.0340 
1.0300 
1.0263 
1.0219 
1*0000 

TABLE 1. Trailing streamline for the flat-nosed body 

In  terms of the length s along the body measured from the singularity the 
curvature K behaves locally as 

K N [ - 1/77S(10gS)2]. (20) 

For classical free-streamline shapes (Milne-Thomson 1950, p. 293) the curvature 
of the streamline near the point where it leaves the body has the local behaviour 

K N constantlJs. (21) 

The singularity of (21) is less severe than that of (20), and the velocity on a free- 
streamline shape is not infinite but has an infinite derivative at  the point of 
streamline departure. 

3.2. Concave circular arc 

Integral equation (9) can be solved if the partial body is a circular arc. This 
section considers the case where the arc is concave to the flow. The arc is assumed 
to have radius a with centre at  the origin and to be symmetric about the x axis 
with angular extent from -j3 to /3 (figure 4). The velocity at a point on the circle 
at an angle 8 due to a unit point source at  an angle $ (all angles measured from 
the positive x axis) is from (1) 

(22) V, = (2a/r2) [(cos 0 - cos $) i + (sin 8 - sin $) j], 



232 J .  L. Hess 

FIGURE 4. Notation for a concave circular arc. 

where r2 from (2) is given by 

r2 = 2a2[l-cos(6'-r#)]. 

The outward normal vector for the concave arc is 

n = -cosOi-sinOj. 

Multiplying ( 2 2 )  and (24) gives 
V,.n = - l /a .  

(23) 

(24) 

(25)  

The kernel of integral equation (8) or (9) is constant for a circle and negative for 
the concave case. As before the free stream is assumed to make an angle u with 
the x axis, equation (12). Now with ds = a dq5 the integral equation for the source 
distribution is 

Zno(6')- a(r#)dq5 = UCOS(6'-U). (26) s', 
Since the integral is independent of 6' the solution of (26) is clearly of t'he form 

a(6') = (U/2n) cos (6'- a )  + constant, ( 2 7 )  

which when put into (26) gives 

sin /3 cos a 

.-P 
The tangential velocity V, on the circular arc is obtained from the dot product 
of (22) with the tangential vector 

(29) t = - sin O i  + cos 6'j 
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(30) 

which after some manipulation gives 

+ --I  sin(@-a)-n-lsinpsina. (31) 

For non-negative a the source density is always positive at 8 = p, and the 
tangential velocity is + co there. For small enough a, the same is true for 6 = - p. 
However for a = a, defined by 

(: 1 

tana, = c o t ~ + [ 1 / ( ~ - / 3 ) ]  (32) 

the source density is zero and V, is finite at 8 = -p. For a > am the source 
density is negative at 6' = - P, V, is - co, and the flow is not physically meaningful. 
However, the flow is always meaningful for the symmetric case a = 0. 

This type of analytic solution is direct in its treatment of the circular arc but 
indirect in its treatment of the trailing streamline. As in any indirect method, the 
hardest part of the calculation is finding the shape of the trailing streamline. 
This situation is evident in the case of the flat-nosed body of Q 3.1. For the circular- 
arc bodies calculation of the trailing streamline is still more difficult, but it can be 
done by requiring equal velocity fluxes a t  various x locations: the resulting 
equation for y as a function of x along the streamline is implicit and contains 
a quadrature. Calculation of the trailing streamline for the symmetric case a = 0 
is discussed in $4, and some shapes are shown in figure 8. One quantity that is 
easy to  compute is the final width of the body, which is 

For the frequently useful case of symmetric (a  = 0 )  flow about a concave semi- 
circle (P = &J), the final width is four times the diameter of the semi-circle. 

Given the source density (28) the velocity off the surface at points of the field 
can be calculated, but this will not be pursued here. However, it is interesting to 
compute the velocity a t  the centre of the circular arc to show how small velocities 
in a concave region usually are. For a = 0 the velocity a t  the origin is in the 
x direction and has magnitude given by 

V(O,O)/U= 

For the semi-circle, P = 471, this is given by 

V(O,O)/U = 4- (4/n2) M 0.095, 

less than 10 % of the free-stream velocity. 

(34) 

(35) 

3.3. Convex circular arc 

Again the arc is symmetric about the x axis, has radius a, and has an angular 
extent from - P to + p. However, as shown in figure 5, it is convenient to measure 
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FIGURE 5. Notation for a convex circular arc. 

the angles 8 and q3 from the negative-x axis. With this notation V, is given by (22) 
with the sign of the x component changed, and the unit outward normal vector is 

n = -cosOi+sinBj. 

The kernel of integral equation (9) is 

V,.n = l/a, 

2nv(0) +IB ( ~ ( q 5 )  dq5 = U cos (0 +a). 

so that the integral equation is 

-B 

The solution for the source density is 

sin cos ol 

The tangential velocity on the circular arc is given by 

sin(0-4) 
v(q3)d++sin @+a), f - B  1 - cos (8- 4) V,/U = 

which becomes 

1 tan QP+ tan $0 
n+P ] log (tan +p - tan +e 

sinp cos a V,/U = - cos(8+a)- 
77 " 

(37) 

(38) 

(39) 

(40) 

+ -+1 sin(8+a)+n-1sin,8sina. (41) (: ) 
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As for the concme cases the details of the streamline shape are discussed in $4 
for the symmetric case a = 0. The final width of the body is 

4na 
W = 7/+p sin p cos a. 

Just as for the concave case there is a value of a above which the source density 
at  8 = p is negative and the flow is not physically meaningful. However, the 
situation is more complicated because sufficiently large values of ,5 make the 
source density negative at 8 = p even for 01 = 0. 

Principal attention has been directed to the symmetric case a = 0. For such 
flows the source density, which is also the coefficient of the logarithm in the 
expression for the tangential velocity, is 

cr(8) = - COSB-- 
2n " [  n.+P sinBI * (43) 

It is clear that ( ~ ( p )  is positive for small values of p but is negative for ,8 =An. 
Thus there is some value p, < 8.n such that for /3 > /3, the flows are not physically 
significant. For ,8 < p, the situation is qualitatively similar to that described 
in 9 3.1 for the flat-nosed body. Namely, the surface velocity is logarithmically 
infinite at the end of the circular arc and the streamline curvature is infinite there. 
The rather interesting case p = p, is described in the next section. 

3.4.  A special case 

The value /3 = p,, which makes .(P) = 0 for the symmetric case u = 0, is the 
largest value of /3 that gives meaningful flow. It is defined as the solution of the 
equation 

tanp, = n-+prn. (45 )  

Solution of this equation gives approximately 

p, = 77.45". ( 4 6 )  

The convex circular arc of extent 2,8, at a = 0 is the only body of the class dis- 
cussed here for which the velocity is finite everywhere. In this sense 8 = p, is 
a 'natural ' point of separation of incompressible flow from a circular cylinder. 
It is interesting to note how close this is to the experimentally determined point 
of laminar separation, which various experiments have given as between 75" and 
90". It is clear that the value of p which makes ( 4 4 )  zero maximizes the width ( 4 2 ) .  
Thus the body with /3 = p, has the maximum asymptotic width 

W = 4na cosp,, ( 4 7 )  

which is just 27r times the width of the body at  the point where the streamline 
leaves the circular arc. This body is sketched in figure 7 (a) below along with other 
members of the family. Co-ordinates of the trailing streamline and its surface 
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velocity distribution are given in table 2. The velocity distribution on the circular 
arc, which is obtained from (41), attains its maximum value of 1.4418 a t  an 
angular location of 0 = 73-59' and falls to a value of 1.3961 a t  0 = &. 

4. Calculation of the trailing streamline for the symmetric case 
The location of the trailing streamline is determined by equating to zero the 

total flux of velocity out of a control volume. The basic quantity involved in this 
calculation is the flux through a vertical line from 0 to y a t  a location x due to 
a unit point source a t  (5 ,q)  (figure 6). This flux is 

(48) 

where the inverse tangents are to be evaluated in the range - &T to + +T. Thus 
the velocity flux due to the entire circular arc through this vertical line is 

The flux of fluid out of the downstream side of the circular arc above the x axis is 

where W is the final width of the body. For points downstream of the circular arc 
the control volume is bounded by (i) the streamline itself, (ii) the x axis (across 
which there is no flow by symmetry), (iii) the downstream side of the circular arc, 
and (iv) the vertical line a t  x from 0 t o y  on the streamline (figure 6).  The equation 
relating x and y is 

q x ,  y; P )  + UY - ' iUW(P) = 0, (51) 
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FIGURE 7. Semi-infinite bodies having (a) convex and ( b )  concave circular-arc 
noses for the symmetric case (a = 0). 

where Uy is the free-stream flux across the vertical line. Equation (50) is valid 
for both convex and concave circular arcs. The quantities 5 and 7 as functions 
of 8, W as a function of p, and CT as a function of 8 and p are those appropriate to 
the convex or concave case, respectively. For the convex case (51) represents the 
entire trailing streamline from the point where it leaves the circle to infinity. 
For the concave arc (51) is only valid downstream of the arc, i.e. for x > a 
(figure 6).  There are two other regimes, where different expressions are required. 

For points above the circular arc, i.e. for cosp < x/a < 1, the control volume 
is bounded by (i) the streamline itself, (ii) the portion of the downstream side of 
the circular arc upstream of the vertical line at  x and (iii) the vertical line at  x 
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4 a  

- 0.2172 
- 0.1972 
-0.1752 
-0.1510 
-0.1244 
- 0.0951 
- 0.0629 
- 0.0275 

0.0115 
0.0544 
0.1015 
0.1534 
0-2105 
0.2732 
0.3423 
0.4182 
0.5018 
0.5937 
0.6947 
0.8059 
0.9283 
1.0628 
1.2108 
1.3736 
1.5527 

Yla 

0.9761 
0.9805 
0.9852 
0.9902 
0.9956 
1.0013 
1.0073 
1.0137 
1.0205 
1-0277 
1.0353 
1.0433 
1.0516 
1.0603 
1.0694 
1.0788 
1.0885 
1.0985 
1.1088 
1.1193 
1.1299 
1.1407 
1.1515 
1.1624 
1.1732 

vT/u 
1.3961 
1.3732 
1.3574 
1.3437 
1.3314 
1.3199 
1.3090 
1.2986 
1.2885 
1.2788 
1.2693 
1.2600 
1.2508 
1.2419 
1.2330 
1.2242 
1.2155 
1.2068 
1.1982 
1.1896 
1-1811 
1.1726 
1.1641 
1.1557 
1.1474 

xla 
1.7497 
1.9664 
2.2048 
2.4670 
2.7554 
3.0726 
3.4216 
3.8055 
4.2278 
4.6923 
5.2032 
5.7653 
6.3836 
7.0636 
7.8117 
8,6346 
9,5398 

10.5355 
11.6308 
12.8356 
14.1609 
15.6187 
17.2223 
18.9862 
20.9266 

02 

Yla 

1.1839 
1.1944 
1.2048 
1.2148 
1.2246 
1,2340 
1,2430 
1.2517 
1,2599 
1,2677 
1.2751 
1-2820 
1.2885 
1.2946 
1.3003 
1.3055 
1.3105 
1.3150 
1.3192 
1.3231 
1.3266 
1-3299 
1.3329 
1.3357 
1.3382 
1.3647 

vT/u 
1.1391 
1.1310 
1.1231 
1.1154 
1.1078 
1.1005 
1.0935 
1.0868 
1.0804 
1.0743 
1.0686 
1-0632 
1.0581 
1.0534 
1.0490 
1.0449 
1.0411 
1.0377 
1.0344 
1.0315 
1.0287 
1.0262 
1.0239 
1.0218 
1.0199 
1*0000 

TABLE 2. Trailing streamline for the body whose nose is a convex circular arc 
of semi-angle p = 77.45' 

between the arc and the streamline. The equation relating x and y on the stream- 
line is 

where @ = cos-1(x/a). (53) 

The flux through part (iii) above, the vertical line at  x between the circular arc 
and the streamline, equals P(x, y ; p)  - P(x, a sin 9; p). However, F(x,  asin @; p), 
which represents flux through the dotted vertical line of figure 6, is zero because 
the circular arc is a streamline and is thus omitted from (52). In  this regime 
g- x may have either sign, and the integrand for P(x ,  y; p)  is discontinuous for 
8 = : $. For good accuracy in evaluating the integral the regions between the 
discontinuities should be evaluated separately. 

Finally for points on the streamline upstream of the circular arc, i.e. for 
x/a < cosp, the control volume is bounded by (i) the streamline itself, (ii) the 
upstream side of the circular arc, (iii) the x axis and (iv) the vertical line at  x 
from 0 to y on the streamline. Since the first three are streamlines, the condition 
is that the flux across the vertical line vanish, namely 

F(x, y; ,8) + Uy = 0. (54) 
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xla 

0 
- 0.0092 
- 0.0155 
- 0.0200 
- 0.0230 
- 0.0252 
- 0.0259 
- 0.0252 
- 0.0230 
- 0*0200 
-0.0155 
- 0.0092 

0.0 
0.010 
0.030 
0.050 
0.075 
0.100 
0.150 
0.200 
0.250 
0.300 
0.400 
0.500 
0.600 

Yla 

1.0 
1.0107 
1.0241 
1.0381 
1.0530 
1.0711 
1.0931 
1.1 130 
1.1345 
1.1547 
1.1767 
1.2021 
1.2322 
1.2602 
1.3078 
1.3486 
1.3939 
1.4345 
1.5067 
1.5703 
1.6279 
1.6808 
1.7762 
1.8609 
1.9375 

vT/u 
co 

0.9361 
0.8862 
0.8695 
0 8654 
0.8668 
0,8740 
0.8825 
0.8933 
0,9038 
0,9159 
0.9297 
0,9463 
0.9614 
0,9865 
1.0073 
1.0292 
1.0481 
1.0795 
1.1050 
1,1264 
1,1446 
1.1741 
1.1968 
1.2146 

x /a  

0-7000 
0~8000 
0.9000 
1.0 
1-1050 
1.2321 
1.3858 
1.5718 
1.7969 
2.0692 
2.3988 
2.7975 
3.2800 
3.8638 
4.5701 
5.4249 
6.4591 
7-7105 
9.2247 

11.0569 
13.2738 
15.9563 
19.2022 
21-0724 

co 

Y b  

2.0076 
2.0723 
2.1324 
2.1886 
2.2438 
2.3061 
2.3758 
2-4528 
2.5370 
2.6279 
2.7245 
2.8256 
2.9296 
3.3035 
3.3138 
3.2391 
3.3346 
3.4234 
3.5045 
3.5772 
3.6414 
3.6974 
3.7458 
3.7672 
4.0 

vT/u 
1.2287 
1,2400 
1.2489 
1.2559 
1.2617 
1.2667 
1.2707 
1.2731 
1,2732 
1-2707 
1.2651 
1.2561 
1.2438 
1-2116 
1.2019 
1.1903 
1.1695 
1.1488 
1.1289 
1.1104 
1.0937 
1.0790 
1.0662 
1.0605 
1*0000 

TABLE 3. Trailing streamline for the body whose nose is a concave circular arc 
of semi-angle /3 = 90° 

For each x, equation (54) yields two values of y, in accordance with the fact that 
the streamline is double valued in the region, until a certain minimum xis reached 
below which no value of y makes the left side of (54) zero (figure 6). 

Equations (48), (50) and (51) may appear formidable, but they can be solved 
quite easily on a desk calculator if only a moderate number of points on the 
streamline are required. Some representative shapes for the convex case are 
shown in figure 7 (a), and shapes for the concave case are shown in figure 7 (b) .  
Streamline shapes for the convex circular arc with J3 = J3, = 77-45’ and for the 
concave semi-circle are tabulated in tables 2 and 3, respectively. Also tabulated 
are the surface velocity distributions on these streamlines. 

This report summarizes work performed at  the Aircraft Division under 
sponsorship of the Independent Research and Development Programme of the 
Douglas Aircraft Company. 
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